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Transport Calculations in Particle-Loaded Medial

Gary J. Scrivner, Ph.D.
Department of Nuclear Engineering
The University of New Mexico, 1970
Particle-loaded materials are sometimes used for radiation shielding.
In many cases shielding calculations, performed with the assumption of a
homogeneous medium having the appropriate ratio of particle-to-matrix
material, are grossly inadequate. The exact distribution of particles
within such materials is probabilistic in nature, and, therefore quan-
tities, such as the transmitted flux, become random variables. To
reasonably evaluate the effectiveness of this type shielding, one must
obtain the expected values and corresponding standard deviations of those
quantities of interest.
In this dissertation, two models of a particle-loaded shield are in-
vestigated. The first is an artificial material postulated to consist of
constant-thickness slabs of infinite lateral extent, which are called

!

"particles," randomly imbedded in a matrix material. Precise analytic
results are obtained for the case in which particle and matrix are pure
absorbers. The second is a more realistic model, consisting of constant-
radius spheres randomly imbedded in a matrix material. A precise treatment
of this model is extremely difficult; hence, the author examines two
approximate schemes which are advantageous from a computational standpoint.
The first approximate scheme has the characteristic that, in the limit of
low volume-percent loadings, it approaches the rigorous solution. The

second approximate scheme, valid when the first scheme is inadequate, pro-

vides a useful method of evaluating the behavior of highly loaded materials.

1 This work was supported by the United States Atomic Energy Commission.
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Again, both particles and matrix are taken to be pure absorbers. The
sphere-loaded problem is investigated by employing Monte Carlo procedures
to simultaneously construct transport particle histories and the structure
of the medium encountered during these histories.

For the pure absorption problem, it is found in both of the above
models that for shields which are very thin relative to particle dimensions,
the average transmission initially decreases in agreement with the homo-
geneous shield assumption. As the shield thickness increases, however,
the average transmission can depart very quickly from the behavior one
would calculate by assuming the shield to be a homogeneous mixture of
particle and matrix material.

This departure asymptotically results in an exponential behavior
governed by an effective constant cross section which is characteristic
of the loaded shield and which is lower than the cross section associated
with the homogeneous assumption. It is also observed that for the pure
absorption problem, the behavior of the expected value of higher moments
of the transmission is no more difficult to obtain than the first moment.

Calculational results are presented and are found to compare favorably
with the limited amount of available experimental data. The extension of
the developed computational techniques to transport problems which include
scattering is then outlined. 1In the final chapter, the author discusses
the implication of his results upon both experimental and additional theo-

retical work on transport theory in realistic particle-loaded media.

2 The modifier "transport" is used to distinguish between transport
particles, such as neutrons or photons, and the loading particles.
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CHAPTER 1 Introductionl

Materials used in nuclear engineering are usually classified as either
homogeneous or heterogeneous. Strictly speaking, all materials are heter-
ogeneous because of density fluctuations and the presence of impurities.
Therefore, when one says a material is homogeneous, one is really assuming
that, for a particular physical process, the material can be accurately
modeled as being homogeneous. For transport calculations, this assumption
is based on the idea that the scale of the inhomogeneities is much smaller
than the transport mean free path. A more accurate model of such materials
would consist of requiring the material to have properties described by
constant mean values with random fluctuations about these means. Such a
description is often required to investigate the detailed nature of
acoustic or electromagnetic wave propagation in the atmosphere or oceans
[6]. Perturbation techniques are very powerful in solving these types of
problems, since the departure from the mean properties is often rather
small. The interesting implication of such an analysis is that quantities
such as acoustic pressure at a field point is not deterministic and one
must investigate the expected values and the corresponding standard devia-
tions of such quantities.

The great majority of materials used in nuclear engineering applica-
tions can be taken as homogeneous when one performs radiation transport
calculations. Heterogeneous systems of materials can often be broken down
into distinct homogeneous regions. The exceptions are those systems that
are heterogeneous in an undeterministic manner. In this category are

shielding materials such as Boral and some of the loaded concretes. Even

1 This work was supported by the United States Atomic Energy Commission.







for these, it is often possible to make the homogeneous approximation
with respect to certain types of radiation transport. However, for Boral,
it is well known that for many practical applications, the homogeneous
assumption is simply not adequate [4].

The purpose of this dissertation is to investigate the shielding
characteristics of undeterministic composite materials. The investigation
will be restricted to homogeneous particles randomly distributed within
a homogeneous matrix of different transport prOperEEes. The composite
is termed undeterministic, since one usually has only bulk data on such
a composite material.

Information, such as spectrum of particle sizes and shapes and the
relative volume of the composite occupied by the particles, is frequently
available. But for a particular sample of such a material, an exact de-
scription of the structure is not available. For different samples of
such material, the shielding efficiency can differ because of the
stochastic nature of the material. Hence, quantities such as transmitted
flux and absorbed dose at various points within such a shield become
random variables, dependent upon the statistics of the medium. The de-
scription of such shields must therefore rely on probabilistic concepts
éuch as the expected transmission and its standard deviation. In addition,
for the type materials under investigation, a perturbation approach is
unsatisfactory because of either the geometric scale of the particles or
the degree of difference in transport properties, or both. The material
to be presented in the following chapters applies equally well to photon
or neutron shielding calculations and, as a result, the term "transport

particle" can be taken to imply either of these types of radiation.
In Chapter 2, a simple one-dimensional model of a stochastic shielding

material is investigated. Precise analytic results are obtained for the







case in which the matrix and particle materials are pure absorbers. The
results provide insight into the expected behavior of more realistic
stochastic shields. Chapter 3 describes the difficulty encountered if one
desires to treat the problem of uniform spherical particles distributed
within a matrix filler. Chapter 4 presents an approximate technique of
performing calculations in such a material which is rigorously correct
only in the limit of low volume-percent loadings but which provides useful
estimates for loadings up to several percent. Chaﬁter 5 describes an
alternative approximate technique, enabling one to perform calculations
for highly loaded composites. In Chapter 6, the two previously developed
techniques are compared with each other and with the scant amount of
available experimental data. To this stage, all calculations have been
based on the assumption that both matrix and particle materials are pure
absorbers. In Chapter 7, the extension of the previously developed con-
cepts to scattering problems is discussed. Finally, Chapter 8 presents

a discussion of obtained results, obvious extensions of this investiga-

tion, and suggestions for continued work.







2:1

2.2

CHAPTER 2 The Slab Problem

Description of the Problem

The purpose of this chapter is to investigate a simple model prob-
lem which retains some of the salient features of radiation transport
through particle-loaded media. In this model, the '"particles'" are
taken to be slabs of infinite lateral extent and of finite thickness
6. The slabs are necessarily constrained to lie parallel to each
other and to be noninterpenetrating. These slabs are randomly im-
bedded in a filler or matrix material such that in a gross sense the
stochastic composite material is specified by the volume fractions
of particle material fp and of matrix material fm'

The analysis is restricted to the pure absorption problem of a

monoenergetic beam of radiation incident perpendicular to the faces

of the slabs. With this restriction, the only transport properties
of interest are Em and Zp, the macroscopic absorption coefficients
of the matrix and particle materials at the incident beam energy.
The problem is to investigate the probabilistic nature of the
transmission characteristics of a thickness x of such a composite
media. Figure 1 presents the variation of the macroscopic cross
section I of the composite material for three possible samples of

thickness x.

Derivation of Governing Equations

It is evident that any position ye[0,x] lies within either matrix
or particle. If position y corresponds to matrix, it is meaningful
to determine the probability of encountering a particle by moving to
position y + A, A > 0. Since particles are randomly imbedded in the

matrix material, this probability is AA + o(A), where A is a constant
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characteristic of the loading.1 The argument leading to this con-
clusion is similar to the one employed in the development of the

Poisson distribution [11]. In more precise terms, one has that
P(particle at y + A|matrix at y) = AA + o(4) , (1)

where P(A|B) is the conditional probability of event A, given the
occurrence of event B.

To obtain an expression for A in terms of the physical parameters
of the media, onme is led to consider the total probability of posi-
tion y + A corresponding to particle P(particle at y + A). Since
position y corresponds to either matrix or particle, one can employ

basic probability concepts to write
P(particle at y + A) = P(particle at y)P(particle at y + A|particle at y)

+ P(matrix at y)P(particle at y + A|matrix at y) .

(2)
In order to satisfy the specified lcading, it is necessary that
P(particle at y + A) = P(particle at y) = fp A (3a)
P(matrix at y) = fm ; (3b)
A simple geometric interpretation of probability yields
P(particle at y + A|particle at y) =1 - o(4) . (4)

6

f(4)
A

= 0.

1 £f(A) = o(A) if the limit
A0







Substitution of (1), (3), and (4) into (2) yields

A
fp = fp( - '5) + fm}mﬂ + o(4d) . (5)

Solving (5) for X in the limit as A -+ 0, one obtains

A = & (6)

-

Physically, A can be interpreted as the average number of slabs per
unit volume of matrix material.

At this point the analysis will focus on the determination of
the average transmission of the model material. The extension to
higher moments of the transmission will be discussed later in the
chapter.

The function Tm(x) is defined as the expected or average trans-
mission through a shield of thickness x, given that position y = X
corresponds to matrix. For the present, x is taken to greater than
a slab thickness 8. It is desired to formulate an expression for
Tm(x 4+ A) in terms of the transmission characteristics of shields of
smaller thickness. If x + A corresponds to matrix, the probability
of not encountering a particle in moving through a distance 4 to
position x is 1 - AA + 0(4A). The reduction in transmission caused
by a thickness A of matrix is 1 - zma + o(A). The contribution to

Tm(x + A) from the above event is

Tm(x)(l - AA) (1 - ZmA) + o(Ad . (7)

The probability of encountering a particle in moving through a

distance A to position x is AA + o(A). Since all particles are of







thickness §, the encountered particle reduces the transmission by
the factor exp(—zpé) below that value corresponding to position
x - 8. It is then noted that position x - § corresponds to matrix.

The contribution to Tm(x + A) from this event is

AA exp(—Zpd)Tm(x = §) +0(d) . (8)

Combining (7) and (8), one obtains

Tm(x + A) = Tm(x)(l - AA) (1 - Zmﬂ)
+ AA exp(—Zpd)Tm(x - 8) + o0(a) . (9)

Performing standard algebraic manipulations and passing to the limit

as A > 0, (9) becomes

dTm(x)

—— % =L £ NI )+ exp(~—2p6)Tm(x - 8) , (10)

fOr X > O,

If xe[0,8], the previous analysis must be slightly modified.
This is due to the fact that if the right-hand face of a particle is
at position x, the reduction in transmission is eXp(—pr) rather than

exp(—Zpé). Hence, for this situation (l0) must be modified to give

dTm(x)
i S 3 f
e (Zm + A)Tm(x) + A exp( pr)Tm(o) . (11)
for xe[0,8]. Equation (10) is a differential-difference equation,

with (11) specifying the required behavior over an initial interval







of width §. To solve (11), the required initial condition is

Ly=1 v (12)

Equations (10), (11), and (12) completely specify the behavior of
Tm(x) for x > 0. It remains to be shown how knowledge of the function
Tm(x) enables one to determine the average transmission T.

At any position x there are but two possibilities. Position X
corresponds to either matrix or particle. As ;reviously discussed,
the probability that x corresponds to matrix is fm. Given that x
corresponds to matrix, the contribution to the average transmission
is Tm(x). The other possibility is that x corresponds to particle.
Given that x corresponds to particle, any relative position ye[0,8]
within the slab is equally likely. More precisely, the probability

density function p(y) associated with relative particle position y

is constant or

(13)

o | =

ply) =

for yel[o,8].

Again, for x > §, the attenuation associated with the particle
is simply exp(-Zpy), and position X - y must correspond to a matrix
position. Using this information and integrating over all possible
values of y, one obtains the desired expression for the average

transmission

£ : 6
T(x) = £ T (x) + fp'é exp(- y)T (x - y) 5 dy , (14)

for x = 4.
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For x¢[0,8], relative particle positions ye[x,8] result in an

_attenuation of exp(-pr) rather than exp(-Zpy). To compensate for

this fact (14) must be modified to read

T(x) = fme(x) + fp .IO.X exp(—Zpy)Tm(x - vy) % dy

; 1
4 =Eex) = a8y 15
o Jewer Gay (15)

x -

for xe¢[0,8]. Expressions (10), (11), (12), (14), and (15) completely

determine the average transmission T(x).

Solution Using the Laplace Transform [3]

In this section the scolution for Tm(x) will be obtained. The

Laplace transform of Tm(x), which will be denoted by Bm(s), is defined as

Bm(s) = -/O.m exp(—sx)Tm(x) dx . (16)

To implement the approach, one multiplies (10) by exp(-sx) and inte-
grates over xe[8,»]. Also, (11) is multiplied by exp(-sx) and inte-
grated over xe[0,8]. The resulting expressions can be combined to

eliminate the term Tm(é). This procedure results in the relation

s + zp + A - A exp[—cs(s + ZP)H

B (s) = . (17)
m
P 35 + Zm + A - A exp[—G(s + Zpi]&

One can now employ the Inversion Theorem to recover Tm(x). The

only singularities of Bm(s) occur at the zeroes of the function F(s)







LL
where

F(s) =s + I+~ A exp[-—s_(s ¥ ZP)] , (18)

an exponential polynomial. It is now desirable to perform a change

of variables by defining

w=6(s+zm+x). (19)

In terms of w, (18) can be written as

8F(s) = w - A§ exp[ﬂé - d(Ep - Zmﬂ exp(~w) . (20)

It is further convenient to define

a = Ao exp[ﬂé - G(Ep - Zmi] ; L21)

For realistic physical parameters, a is real and positive. The

zeroes of (18) can thus be determined by an investigation of the equation

we ~-a=20 (22)

for a > 0.

The roots of (22) have been examined by several authors [13].
Therefore, the results will be stated here without formal proof. Ex-
pression (22) has one real root and an infinite number of complex roots
occurring in conjugate pairs. All these roots are simple. Denoting

a conjugate pair of roots as w_, one writes

w_ = X *iy (23
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for n 2 1. The one real root can be included in the above list as
corresponding to n = 0 if one demands all roots to be simple. The

real root satisfies the equation

X exp(xo) = a ., (24)

Furthermore, it is known that

(2n - 1)m <y < 2am - (25)

for n 2 1. Finally, it is noted that the xn's form a decreasing

sequence, Or

X € X (26)

for n = 0. A more precise specification of the location of the roots
of (22) can be obtained, but is not required for purposes of this de-
velopment since the essential features are now apparent. The roots
are partitioned by (25) such that an accumulation at one point in the
complex w~plane is impossible. Further, the real root has the largest
real part. These observations imply that the inverse of (17) is well-
behaved and, for large x, Tm(x) will behave exponentially with an
argument determined by the location of the real root.

One can now apply the Cauchy Integral Theorem to (17) to recover

the asymptotic behavior of Tm(x) for large x and obtain

(27)
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as x > », It is convenient to define constants Cm and Zm such that

(27) can be written

Tm(x) = exp(—me) (28)

as x + «, where

*0
ZOO::\‘}'Zm-—g' : (29a)
and
Zp - Zm
G = o . (29b)
(1 + xO)(Zp Zm)

As one would expect on physical grounds, it can be shown that C_ is
positive and that I_ lies somewhere between the values of the cross
sections associated with matrix and particle.

Expression (28) is now substituted into (14) to obtain the
asymptotic behavior of the average tramsmission T(x). Carrying out

the implied integration and, with a little algebra, one obtains
T(x) = D_ exp(-I_x) (30)

as x » «, where

D_ = 2 5 - (31)
(xo - A6)

(1 + xo) 1+ 5S¢ - )
P m
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Computational Results

For practical purposes, the concentration in the preceding section
was restricted to only the asymptotic solution. Equations (10), (11),
(12), (14), and (15) can actually be solved numerically with less
effort than is involved in obtaining the additional roots required
to evaluate the '"complete' analytic solution. The analytic asymptotic
solution (30) can be used conveniently to check digital or analog
calculational results. In practice, one can obtain an analytic ex-
pression for T(x) for xe[0,8] by employing relations (11), (12), and
(15). For practical purposes, this thin shield behavior together
with the asymptotic behavior are sufficient to describe the basic
attenuation properties of the model problem. The plots in this
chapter were obtained in this manner.

Figures 2 through 5 present some computational results for
various particle loadings and particle thicknesses. For the case
that Zp > Zm, the matrix is taken to be transparent and the particles
taken to have cross section Zp - Zm. Thus, the true attenuation at
position x is lower by the factor exp(—me). Similarly, for the case
that Em > Zp, the particles are taken to be transparent and the matrix
to have a cross section Zm = Zp.

The behavior is as one would expect on physical grounds. For
a fixed loading, the thinner the particles, the better the shielding
efficiency for a fixed-thickness shield. In the limit that the thick-
ness of the particles, expressed in mean free paths, becomes small,
the solution corresponding to a homogeneous mix of particle and matrix
material is obtained.

Based on the computational results, the most important observa-

tions are how rapidly the asymptotic solution is attained and how
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severely the homogeneous mix solution can underestimate the trans-

mission through such a composite material.

Validity of the Homogeneous Approximation

Since precise analytic results have been obtained for the slab
problem, a means of estimating the error induced by treating a
particle-loaded medium as homogeneous is available. In order to
perform this investigation, the difference between Z_ and
I = £I 4+ prp is examined as a function of particle thickness.

Combining (21) and (24), one obtains

X exp(xo) = A§ exp(lﬁ - G(Zp - %nn ‘ (32)

Employing (32) and noting that A8 = fp/fm, independent of &, one can

obtain
X (2: = 2 )zké
J (1 + A8)
Expressions (33) and (29a) imply that
_5 TSf 2 \2
L = le——zp— -TZ_R + 0(8)( . (34)

Equation (34) presents a convenient criterion for examining the validity

of the homogeneous assumption. Expression (34) shows that the three

critical factors are: (1) the thickness of the particles, 6, (2) the

relative number of particles, fp, and (3) the degree of departure of

particle cross section from the mean cross section of the medium,

{ . 5B

L
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2.6 The Higher-Moment Problem

The previous treatment has concentrated on the average trans-
mission. For engineering applications, it is also of interest to
know how well the mean represents the distribution of possible values.
The probability of the transmission for a specific shield exceeding
twice the mean transmission, for example, could be a crucial factor
in the acceptability of a particle-loaded material for a shielding
application. An examination of the expected values of higher
moments of the transmission can provide this type of information.

If one denotes the functional dependence of the cross section
for the ith sample of the model media as Ei(y), ye[0,x] and the

corresponding transmission as Ti(y), then

d

ay T,(y) = -2, (y)T,(y) (35)
with initial condition Ti(O) = 1. Note that the average transmission
is simply the mean value of Ti(y) averaged over all possible samples
of the media. 1In order to investigate the higher moment problem,

]n—l

one is led to multiply (35) by [Ti(y) , where n = 1.

The result can be cast in the form
RO [1,0]"
: [Ti(y)] = -z, (|17, (36)

with initial condition [Ti(O)}n = 1. The implication is indeed

fortunate. Expression (36) is identical to (35) except that the
cross section variation is multiplied by the factor n. Even the
initial condition at y = 0 remains unchanged. Hence the analysis

presented for determination of the mean transmission is equally valid

th - ¥ . ,
for the n moment of the transmission, provided both particle and
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matrix cross sections are increased n-fold. Note that this con-
clusion is simply a result of the structure of equation (35) and is

independent of the nature of the model problem.

Summary of Slab Problem

In this chapter, a simple model prcblem has been examined. The
purpose was to gain some insight into the effect of particle size in
a random particle-loaded medium. In the limit as x =+ 0, it is evi-
dent that the average transmission initially decreases with L. Sev-
eral particle thicknesses into the medium, the average transmission
approaches an asymptotic behavior and decreases exponentially with
an effective cross section which has been denoted as Z_. 1In section
2.5 an analytic result was obtained which permits one to evaluate
readily the legitimacy of assuming a particle-loaded medium to be
homogeneous. Although its development was based upon a simple model,
equation (34) should provide a useful estimate of the departure from
homogeneity for more realistic materials. Finally, in section 2.6
an important observation pertaining to the higher-moment problem was

presented.
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CHAPTER 3 The Complexity of the Sphere Problem

The attractive feature of the slab model of Chapter 2 was that as one
exits from a particle (slab) into matrix, the probability of encountering
a subsequent slab is completely specified by a constant, A, which is com-
pletely determined by the nature of the loading. Unfortunately, the author
knows of no engineering materials which have the one-dimensional loading
characteristics of this model. Realistic composite materials usually have
an intrinsic three-dimensional character. Slugs of steel imbedded in
concrete, boron carbide spheres in aluminum, and voids distributed in foams
are examples of more realistically structured composites, To examine the
shielding characteristics of such materials, one must be able to treat the
channeling of radiation between particles. The simplified nature of the
slab model precludes this type investigation, Hénce, in subsequent chapters,
a more realistic model is investigated. This model consists of constant-
radius spherical particles randomly imbedded in a matrix filler. Even this
model would be difficult to construct physically because of the problem of
achieving a truly random distribution of spheres with existing fabrication
techniques. True composite materials could be expected to have pseudorandom
distribution of particles related in some abstract manner to the fabrication
process., Hence a truly accurate description of such materials appears to
require an accumulation of experimental data specifying the variation of
transport properties along a large sample of ray paths, The situation be-
comes even more complex if one desires to include a scattering mechanism
in the transport calculations since, in this case, simple ray paths no
longer suffice. Nevertheless, the spherical-particle model should provide
some useful insight into the expected behavior of such materials for shield-

ing applications.
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The problem now is to formulate the construction of the sphere-loaded
medium mathematically, as was accomplished for the slab problem. The in-
herent difficulty is that this model is closely related to the hard-sphere
model of liquids and dense gases used by molecular physicists and to the
random packing problem of the mathematicians. Results in these areas are
quite limited, although the literature contains experimental and numerical
studies [1,8]. The chief difficulty is that the medium has short-range
ordering which implies that the distribution function governing the probable
position of one sphere is dependent on the relative positions of many of
its neighbors.

The most pertinent numerical studies are of a Monte Carlo nature. A
large box of spheres is simulated on a digital computer, According to some
distribution function, velocity vectors are assigned to each sphere in
order to specify the initial state of the system. A many-body dynamics
problem is then solved to describe the subsequent motion of the ensemble of
hard spheres. After attainment of dynamic equilibrium, the state of the
system at various times is used to investigate the statistical nature of
such a system of particles. The most severe limitation of this approach is
the number of particles which can be utilized. Ignoring this latter con-
sideration, suppose one desired to employ the above scheme to investigate
the shielding characteristics of a sphere-loaded medium, The most direct
approach would be to use the above procedure to construct many samples of
the pertinent shielding configuration. Each of these many samples would
require a Monte Carlo transport calculation because of the complex geom-
etry. Results of all these calculations could then be averaged to obtain
estimates of the average shielding behavior of the stochastic material.

It will be shown in later chapters that it is permissible to track the

behavior of but one source transport particle per constructed sample,
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averaging the results over many samples. If this procedure is employed,
each source transport particle is traversing a random sample of the ma-
terial which is completely independent of prebiously constructed samples.,
The implication is that one needs only to construct that portion of the
material through which this single source particle travels. Unfortunately,
the medium construction technique described above requires the establish-
ment of a rather large volume of the medium in order to obtain these types
of data.

The following two chapters present two approximate techniques of
modeling a sphere-loaded stochastic shield. Each of these has the attrac-
tive feature that only the portion of material required to determine the
fate of one source transport particle need be constructed. Even these
approximate schemes are of sufficient complexity to demand Monte Carlo
methods to carry out the construction., The basic method of attack is,
then, the simultaneous construction of transport particle histories and
construction of the corresponding paths through a stochastic material by

means of the Monte Carlo method.
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CHAPTER 4 The Random Approximation to the Sphere Problem

Introduction

As indicated in Chapter 3, the difficulty in doing transport
calculatiﬁns in a medium consisting of a matrix loaded with spherical
particles is that the particles are not randomly positioned. As the
volume fraction occupied by the particles increases, the pseudorandom
nature of the loading becomes more and more pronounced. Spheres are
forced into more advantageous positions by contact with their neigh-
bors in order to achieve the increased packing density. However,
for a relatively sparsely loaded material, this effect should be
negligible. In this chapter, the above idea is investigated. Sphere
centers will be assumed to be randomly distributed within the non-
excluded volume. The term nonexcluded volume will be used to dis-
tinguish a possible site of a sphere center from those positions
within one sphere diameter of a previously established sphere center,
Therefore, spheres will not be allowed to interpenetrate. Within this
chapter the analysis will be restricted to the case in which all

spheres have identical radius R,

Theory of Sphere Placement

The objective of this section is to develop the methods for con-
structing the nature of a particle-loaded material as seen by an
observer moving along a ray through this material. First, the observer
must be assigned a starting point. The probability that this starting
point lies within matrix is simply equal to the volume fraction of
matrix fm. If the starting point does not lie in matrix, then it must
lie within a spherical particle. In this case the center of sphere

must lie within a spherical volume of radius R about the starting point.
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Any position within this spherical volume is equally likely and,
therefore, the positioning of the sphere center relative to the
observer's starting point is equivalent to randomly selecting a

point within a sphere of radius R. Regardless of the nature of the
starting point, it is convenient to establish the origin of a Cartesian
coordinate system at the point, the only requirement being that the

ray through the medium will be taken to correspond to the positive x
axis. The task is now to construct the nature of the medium en-
countered as the observer moves from the origin along the positive

X axis.

The first step in the analysis is to obtain the constant proba-
bility factor for the sphere-loaded medium analogous to A of the slab
problem presented in Chapter 2. For clarity, this factor will be
denoted by AS. One wishes to obtain the constant AS such that if
position (x,0,0) corresponds to matrix, the probability of encounter-
ing a particle by advancing to position (x + A,0,0) is AL+ o(hd).

Following the same argument presented in section 2.2,
P(sphere at x + A) = P(sphere at x)P(sphere at x + &|3phere at x)

+ P(matrix at x)P(sphere at x + A|matrix at x) .

(37)

Immediately, one recognizes that
P(sphere at x + almatrix at x) = RSA + ofd) , (38a)
P(sphere at x + A) = P(sphere at x) = fp ; (38b)

and

P(matrix at x) = fm . (38c)
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The only remaining term in (37) is P(sphere at x + ﬂ[sphere at X) .
To obtain this conditional probability to within o(A), one ignores
the possibility of the sphere at x + A being distinct from that sphere
at x. With reference to figure 6, it is observed that for position
(x,0,0) to lie within a particle, the center of that sphere must be
contained within a spherical volume of radius R about this point.
Similarly, for position (x + 4,0,0) to lie within a particle, the
center of that sphere must be contained within a spherical volume of
radius R about the point (x + A,0,0). The desired conditional prob-
ability is simply the fraction of the volume of the sphere about
(x,0,0) corresponding, in a set theory sense, to the intersection of

the two spherical regions. An elementary volume integration yields

the result that

P(sphere at x + AISphere at ) = 1 = %%-+ o) (39)

where D = 2R. Employing (38) and (39), one can rewrite equation (37) as

ks 34
f = fp(l - Eﬁ) + fmlsé + o(4) . (40)

Rearranging and taking the limit as A + 0, one obtains that

A = _—R— v (41)

It should be noted that the above analysis yields only the prob-
ability of encountering a sphere in moving from matrix position (x,0,0)
to position (x + A,0,0). Given that there is such an encounter, it is
now desirable to investigate that the location of the center of the

encountered particle. Referring to figure 6, it is evident that the
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center of the encountered sphere must lie within the shaded volume.
Relative to position (x + 4/2,0,0), the position of such a sphere
center can be described by its spherical coordinates (r,$,0), as

shown in figure 6., From azimuthal symmetry, it is apparent that every
value of 6£[0,2n] is equally likely. Hence the probability density
function pe(e) associated with the 6 coordinate of the sphere center

is simply
i

The next step is to determine the density function associated

with the coordinate ¢. One notes that, by definition for d¢ > O,

p,(9)d¢ = B(3c(,0 + ap) . (43)

This probability can be interpreted as the fraction of the shaded

volume enclosed by the coordinate surfaces represented by ¢ and

¢ + d¢. Performing the implied integration, one obtains

P¢(¢) = sin (2¢) + o(a) , (44)
for $e(0,w/2). In the limit as A -+ 0, the shaded volume in figure 6
shrinks to a hemispherical surface upon which the center of the en-
countered sphere is constrained to lie. With this, the positioning
of the sphere center is completely specified by the density functions

associated with the 6 and ¢ coordinates, namely

pe(e) = —2-1; (45a)

and

p¢(¢) = sin (2¢) . (45b)
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It should be noted that, so far in this section, it has been
tacitly assumed that the observer is unaware of any previously estab-
lished spheres which might interfere with the one encountered and then
positioned. Before examining such interference effects, it is con-
venient to present an example of the implementation of the results
obtained to this point. Assume that an observer is initially at a
starting point within matrix material. He then begins to travel
along the positive x-axis through the matrix until he encounters a
sphere. The problem is to determine the probability that he advances
a distance x without such an encounter. If one denotes this prob-

ability as P(x), then
P(x+4) =PxA - AS&) + o(h) . (46)

Passing to the limit as A - 0, one obtains the differential equation
- = ) P (47)

Also, the probability of making no encounter in advancing a distance

x = 0 is unity or P(0) = 1. Therefore, the solution to (47) is
P(x) = exp(-lsx) . (48)

Note that equation (48) is identical to the behavior of the attenua-
tion of a beam of radiation in a purely absorbing medium of cross
section AS. Hence statistical samples of the distance traveled by
such an observer prior to his first sphere encounter, can be con-
structed in a Monte Carlo fashion equivalent to sampling path lengths
of a tramsport particle in a purely absorbing medium. Once this
distance has been sampled, the placement of the encountered sphere

can be completed by employing (45) in a Monte Carlo fashion,




R R R R R
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In order to treat the interference effects mentioned earlier,
it is noted that a previously positioned sphere may preclude estab-
lishment of a new sphere center within part or all of the shaded
volume in figure 6. This implies both a local reduction in the value
of AS and a modification of the density functions in equation (45).
An analytic treatment of the above effect for arbitrary interference
from one or more previously established spheres would present a
tedious and time-consuming task, even in light of the implied
numerical treatment of the problem.

Fortunately, there is an alternate approach to the problem. This
is best demonstrated by considering the transport problem of a beam
of radiation in a purely absorbing material of cross section EI(x).
Suppose IL(x) assumes a maximum value which will be denoted by me.
The differential equation governing the transmission T(x) through

such a material is given by

dr
E'J-{- = =7 (K)T (49)

with
BeE) <= 1 5

Now, suppose one defines a parameter y(x) to be

|

(x)

mx

y({x) = 1 - (50)

g

Employing (50), one can rewrite equation (49) in the form

dT -
e 4 zmxT = mey(x)T (51)
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with T(0) = 1. The problem is now simply a matter of interpretation.
One notes that y(x)e[0,1]. Equation (51) is equivalent to a transport
problem in a medium having a constant total interaction cross section
equal to me but with a variable forward scattering coefficient given
by y(x), [12]. In a Monte Carlo sense, the problem would be treated
by choosing transport path lengths based upon the cross section me.
A random number could then be selected and, if less than y(x), the
transport particle would be allowed to continue., If the random num-
ber was greater than y(x), the transport particle would experience
an absorption event,

An interpretation similar to the one above can be applied to
the problem of placing spheres when interference effects are present.
The distance to the next sphere encounter is sampled as if no inter-
ference effects were present and hence is simply based on the constant
factor AS. Actually, the effective ks may be reduced by interference
corresponding to I(x) < me in the above problem. The process of
selecting a random number and comparing it to y(x) to decide the fate
of the transport particle in the previous problem has an interesting
analegy in the case of sphere placement. Having chosen the point at
which a sphere encounter occurs, one places the sphere by using
relation (45). One then checks the validity of such a sphere place-
ment in relation to previously established spheres, If there is no
interference, then a valid sphere has been established which corre-
sponds to an abosrption event in the transport problem. If there is
interference, then the placement is not valid and the position at
which the encounter would have occurred, becomes the starting point

for sampling the distance to the next trial sphere encounter.







33

4.3 Implementation of Theory of Sphere Placement

In this section, three methods are presented that employ the
concepts developed in the previous section to obtain the average
transmission of a purely absorbing spherical particle-loaded shield.
With reference to section 2.6 it should be noted that if one can
obtain results for the average transmission, then one can also com-

pute the results for the average of higher moments of the transmission.

The Direct Method

Suppose one desires to compute the average transmission of a
shield of thickness x of such a particle-~loaded material. Using the
techniques developed in the previous section in a Monte Carlo
fashion, one can construct a sample cross section profile along one
ray through the medium. Let this construction be performed and the
result denoted by Zi(y), ve[0,x]., Since the problem is restricted
to pure absorption, one can compute the transmission Ti(x) associated

with the ith sample as simply

Ti(x) = exp(— fxzi(y) dy) i (52)
0

This procedure is then repeated for a large number I of sample paths

through the medium. The average transmission T(x) is then computed as

I
T, (%)
i=1 3

Ty = i . (53)

A subtle, but important, point to note is that one sample

corresponds to a single ray through a shield of thickness x. Each
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sample refers to a distinct shield so that once Ti(x) has been computed
for Zi(y), ye[0,x], only Ti(x) must be stored. In other words, each
sample can be constructed independently. This is an important con-

sideration relative to machine memory requirements.

The Double Monte Carlo Method

In the Double Monte Carlo method, one constructs a sample ray
specified by Ei(y), ye[0,x]. Rather than computing the transmission
Ti(x) associated with this ray explicitly by using (52), however,
one uses a Monte Carlo scheme to estimate Ti(x).

Define J as the total number of source transport particles to
be employed in estimating Ti(x). Of the J source particles, let n;
denote the number of these source particles which penetrate a distance

X into the shield along the path defined by Zi(y), ye[0,x]. Then

Ti(x) is estimated to be

n

:
J

T,(x) = . (54)

If the procedure is continued for I samples, the average transmission

is given by

I I
;g; Ti(x) ;g; ny
T(x) =~ =— - ~ 1"U : (55)

Note that the product IJ is simply the total number of source trans-
I
port particles., The sum :E: n, is the total number of particles

=1
penetrating a thickness x. The implication is that an accurate esti-

mate of T(x) is dependent only on the product IJ. Therefore, it is
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extremely convenient and acceptable to choose J = 1. This enables
one to construct the sample of particle-loaded media and the path
length of the transport particle simultaneously., Construction of
the medium can often be terminated prior to position y = x if the
transport particle experiences an absorption event within the shield.

In addition, at any position y, previously placed spheres whose cen-
ters lie to the left of position y = D cannot affect the possibility
of a new sphere encounter. Hence one must remember only a minimum
amount of data describing the previously constructed medium along

the ray.

The Perturbation Method

The Perturbation method employs the basic ideas presented in
the Double Monte Carlo method in that both medium and the trajectory
of the transport particle are constructed with Monte Carlo techniques,
The difference is that in the previous method transport path lengths
are sampled at position y based on either Zm or Ep, dependent upon
whether position y corresponds to matrix or particle. In the per-
turbation approach, transport path lengths are sampled as if the
medium were homogeneous, having a cross section equal to the larger
of Em and Ep. The pertinent concept follows immediately from the
result obtained in equation (51), which pertained to an absorption

problem in a medium of arbitrary cross section Z(y) = I_ .

Recalling (51), one can write

dT

e e (56)
with T(0) = 1 and
Z(y)
y(y) =1 - el (57)
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For present purposes, one can assume Ep > Em. Then, for one sample

of the particle-loaded medium characterized by Zi(y), vel[0,x],

L) =1, - @ - IIF @), (58)

where Fi(y) = 0 if position y corresponds to particle and Fi(y) = 1
if position y corresponds to matrix. Combining (56), (57), and (58),

one obtains

dT, (y)

with Ti(O) = 1 and
1@ = F——F, () . (60)

Thus, for the problem in which the particles are better absorbers
than the matrix, one again constructs path lengths of the transport
particle and the sample of the medium simultaneously, However, trans-
port path lengths are always based upon Ep. The position correspond-
ing to the terminus of a path length is then compared to the medium
sample. If this position corresponds to a particle, the transport
particle dies in that it experiences an absorption event. If not,
the position corresponds to matrix and the probability of the trans-
port particle being scattered forward is simply (1 - Em/Zp), while
the probability of an absorption event is szzp. The case in which
Em > Ep can be treated by merely interchanging Zm and Zp, and conversely.

The method described is termed a perturbation approach, since the con-

tribution to Ti(y) from particles having experienced j collisions

corresponds to the jth term of a perturbation expansion of Ti(y) about
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the homogeneous problem associated with the material having the larger
cross section. Note that because of the physical interpretation; one
is guaranteed that the perturbation scheme will converge to the desired
solution.

At this point, it is convenient to compare the three techniques
presented. The first has the advantage that full use can be made of
each constructed sample of the medium in the sense that the associated
transmission is explicitly calculated for this sample. Its chief
disadvantage is the fact that one is using the knowledge of the ana-
lytic form of the solution which, for more complex problems, may not
be available. The Double Monte Carlo scheme has the advantage that
no such use of an analytic result is employed, and transport path
lengths based upon the true medium are sampled. Its main disadvantage
is that the transport calculations are strongly coupled to the con-
structed medium. In the context here, this means that the complete
nature of the cross sectional variation along a ray must be taken
into consideration in order to determine the history of a transport
particle. In the perturbation scheme this is not required. The
history of the transport particle is dependent only upon the nature
of the constructed medium at those points at which the particle ex-
periences collisions. Further, this method makes no use of the
analytic form of the solution but only of the structure of the gov-
erning differential equation. The chief disadvantage of the perturba-
tion approach occurs when, for example, the particle cross section
is much greater than the matrix cross section and the particle loading
is sparse. In this situation, the tramsport particle literally creeps
through the medium, having an enormous number of collisions while

surviving the vast majority of them. Hence, obtaining transmission
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z

estimates for all but very thin shields (x -—£)can be a very time-
P

consuming process.

Validity of the Random Assumption

This section presents an evaluation of the validity of the
random placement of sphere centers. It should be noted that the
validity of such an assumption is dependent only upon the volume
fraction of the spheres. The size of the spheres is irrelevant,
since one can always choose a distance scale based upon one sphere
diameter. The procedure used to obtain an estimate of the wvalidity
of the random placement approach is straightforward. Using the re-
sults of section 4.2 one constructs many samples of rays of length x
through a particle-loaded medium based on a specified lcading fraction
fp. Arbitrarily, particles are taken to have a unit diameter,

Based upon these samples, one computes the fraction of the total
length of constructed medium that lies within particle and defines
this fraction as %p' If the construction were completely valid,
one would obtain fp - ip in the limit of many samples. Departure
from equality gives one a convenient estimate of the degree of
validity of the construction technique. If such a scheme is carried
out, it is found that %p is dependent upon the sample distance X,
Calculations show that, as x approaches zero, Ep approaches fp. This
is simply a result of the correct manner by which the nature of the
initial point is sampled. As x increases, fp decreases until it
attains an asymptotic value characteristic of the random placement
assumption. Computational results of these asymptotic values of f

versus fp are presented in figure 7. From the data presented in

figure 7, one can estimate the percent error in fp due to the assumption
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of random sphere placement. A convenient rule of thumb is that

£ = K

% error = —I%;——Jl « 100 = +25 fp 5 (61)

P

Hence if one employs random sphere placement in a medium composed

of 5 volume percent of spheres, the associated error in fp will be
% erv¥or = 25 (0.05) = '1.25 « (62)

The precise effect of such errors on transmission calculations is
not clear. Qualitatively, however, one can argue that such errors
become more important as the difference in particle and matrix cross

section increases. Also, in the case in which the particles are the

more efficient absorbers, the error is such that one will overestimate

the transmission, a convenient behavior from a safety standpoint.
The desirability of applying this approach for various loading frac-

tions will be discussed in Chapter 6.

Discussion of Computational Results

Figures 8 through 11 present computational results for various
particle loadings and particle diameters. For the case zp > T - the
matrix is taken to be transparent and the particles taken to have
cross section Ep - Em. Thus the true attenuation at position x is
lower than that plotted by the factor exp(—me). Similarly, for the
case Em > Ep’ the particles are taken to be transparent and the matrix
to have a cross section Em - Zp. The results are very similar in
character to those obtained in the model slab problem.

For very thin shields, the average transmission decreases expo-

nentially with the cross section of the homogeneous mix of particles







|
\\_
\\ ‘-
\\
=
pading at 0.5%

_ @D D%

i \\ (1) 14 :
S m -9
F° / bl &
a4 e a5

UOTSS TUSUBL], 29BRIDAY

B WRFEE SerweT AT, - SRR T R S PR Y S T e T TR
18] (6|
4
; ; -
A mM o
- & a
]
o 3 3
b= S L 0O
=

o it

o

100

Q

ess, (L,-& )x

T
-

1d Thicky

Shie






Average Transmission

1.0\‘:‘ | I

T

N

\\ (551 -

(T~ E) D=3

S8
|
il -
Homogeneous i
? Figure 9 E
‘h(“ Sphere Loading at 1% ~
! wvith Ep>z,m |
|
|
|
o2 -
|
I
[ | ¥ I 4
0 25 50 15

Shield Thickness, (Ep-i£)x

42







Average Transmission

1.0

! / {
e Figure 10 !
‘ . Sphere lLoading at 5%
with L > L
¥ O\ P o
\ x
\ %
e x
6 — S N\ o
\ M i
\ \ B
\ x \
= \ \ \
\ \ . ¥
\ =
\ x 3
\‘__ .‘\ ) ( rb" Em) D=3 :
\\ |
\ |
o \ X 2
| \\ \ |
| \ A |
! \ \ i
! b s '
_, \ |
Xiriih
- : . |
| \\ .
| \
! \\
\ |
X
X
2L "
| Homegeneous
| |
;_ |
{ |
i
{ ! L !
0 10 20 30

Shield Thickness, (Ep-Em)x

43







Average Transmission

1.0

AL

Bt

Figure 11
Sphere lLoading

with L) > &

~H

\
\

' \
b

A

\.

at 5%

'K\;} (Em-ZP)D=3

(Tp-5p)De2

fomogeneous

Shield

s
Thickness, (Emfzp)x

44




e




4.6

45

and matrix. For shields thicker than several particle diameters,

the average transmission decreases exponentially with a cross section
characteristic of the statistical nature of the material. Between
these two extremes is a transition region in which the behavior begins
to approach the asymptotic behavior., Again, the most important ob-
servation is how severely the solution corresponding to a homogeneous
mixture underestimates the transmission. The computations presented
were obtained by using the direct method presented in section 4;3.
However, it has been verified that the remaining procedures give

identical results.

Summary of Random Treatment

In this chapter a random approximation to the sphere problem has
been investigated and evaluated. It is apparent that in the limit
of low loadings an exact treatment is obtained. The computational
schemes are all based upon the Monte Carlo method, and all have the
advantages that the only portion of the medium to be constructed is
that portion which an observer moving with a transport particle ex-
periences. The behavior of the average transmission with shield
thickness was found to behave qualitatively in the same manner as
one would expect from the slab problem presented in Chapter 2.
Computational time for a general problem is difficult to specify,
being quite dependent upon which method in section 4.3 is employed.
However, except for the perturbation technique, a reasonable descrip-
tion of the solution to a problem requires something like five minutes
on a CDC 6600. As pointed out before, the efficiency of the perturba-
tion technique depends strongly on the nature of the problem. For

some problems this technique is competitive with the others but if







used on problems unwisely, increases in run times by factors of 10

or 100 are quite possible.
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CHAPTER 5 Relaxation of FCC Lattice and the Sphere Problem

Introduction

In Chapter 4, a technique of performing transport calculations
in a medium consisting of a matrix loaded with spherical particles
was investigated. The chief disadvantage of this technique is that
as the loading increases the inherent assumptions become progressively
worse. Also, with the scarce amount of available experimental data,
it is difficult to evaluate the acceptability of this technique at
relatively high loadings. 1In this chapter, a completely different
approach to modeling the medium will be investigated. The only
justification for this approach is that it preserves some of the
character of the true problem and is computationally convenient. An
evaluation of this technique is made with respect to both available
data and the random placement technique. There are two lattice
structures which permit maximum packing of constant radius spheres.
These are known as hexagonal close packed and face-centered cubic
(FCC). Because of the relative geometric simplicity of the latter,
it is computationally more convenient to choose a model based upon
this structure. The basic idea in this chapter is, then, to relax
a rigid FCC structure of spheres in such a way that a certain degree

of randomness is introduced into this artificial medium.

Theory of Relaxation

The purpose of this section is to present the technique of random
relaxation of an FCC lattice and its implementation as applied to
particle transport. For an FCC unit cell at maximum packing, the

relation between the lattice parameter a and the sphere radius R at
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maximum packing [10] is given by
a = 4R/V2 . (63)

For this configuration, the volume fraction of the unit cell occupied
by sphere material is roughly 0.74. The first step in the relaxation
process is to expand the dimensions of the unit cell to a value a,
which results in a volume fraction of sphere material corresponding
to fp of the loaded material. The desired value of a satisfies the

relation

3k

1/3
o iﬁ—“) R . (64)
P

The next step is to allow the sphere centers to drift about these
rigid lattice sites. The governing criterion for this process is
that any one sphere is restricted to lie within an assigned volume
about its rigid lattice site, and thereby the mechanism for relaxa-
tion precludes the interpenetration of two neighboring spheres.
Therefore, to maximize the degree of relaxation, one concludes that
the spheres are restricted to lie within an artificial spherical

volume about their respective lattice sites, having radius R given by
R = V2 a/4 . (65)

Radius R corresponds to the radius of that sphere which would
result in maximum packing of the unit cell having lattice parameter
a. If the sphere of radius R is to remain within a spherical volume

of radius R, it follows that the sphere center is contained to lie
within a third spherical volume of radius R* = R - R. Basically, the

above concepts fully describe the FCC relaxation scheme.
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The procedure for constructing a ray through this pseudorandom
medium is now straightforward. First, a starting point must be selected.
Since every point within the medium corresponds to a point within a
unit cell, this simply amounts to randomly selecting a point within a
unit cell. If this point does not lie with a radius R of the lattice
sites, the point must lie within matrix. If the point does lie within
a radius R of a lattice site, the sphere corresponding to that site
is placed by randomly selecting the coordinates of its center from
within a region of radius R* about the lattice site. Whether the
starting point lies within particle or matrix is thereby determined.
Once the starting point has been selected, the direction of the ray in
relation to the lattice structure must be decided. This amounts to
randomly selecting a point on the surface of a unit sphere and hence
the random selection of a unit vector relative to the lattice. As
one then progresses along the ray from the initial point, the medium
is completely specified until one enters a subsequent region of radius
R about a new lattice site. This occurrence requires an additional
sphere placement. The procedure is continued in similar fashion along

the entire required ray length.

Implementation of this Theory

Although it is completely feasible to construct entire rays using
the model described in section 5.2, actual calculations employing this
model have been restricted to the perturbation approach. For this
approach only the nature of the medium at the locationm of transport
particle interactions must be determined. Since interactions always
occur with a unit cell, the coding of this approach is simple. Because

of the nature of the model, as a ray exits from a spherical region of
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radius ﬁ about a lattice site, there is no mechanism to return to this
region, and hence memory of the placement of the corresponding sphere
is no longer required. If one desires to employ this model on a pro-
duction basis, the author recommends that the effort be taken to im-
plement the Double Monte Carlo Method referred to in section 4.3,

This recommendation is based on the inefficiency of the perturbation
approach for a large class of interesting problems as previously dis-

cussed in section 4.3.

Validity of the FCC Relaxation Technigque

Evaluation of the accuracy of this technique must rely completely
upon the extent of agreement with experimental data. It is recognized
that a rather crude model of a complex physical problem has been
presented. The model does duplicate the required loading fraction
and enables one to perform calculations for any attainable packing
density. Again, in the case in which the particles are better absorbers
than the matrix, one will obtain an upper bound on the transmission by
using this model. The argument leading to this conclusion is based
on the fact that the structure of this model is much greater than the
truly random structure, and hence the probability of obtaining matrix

paths through this model medium will be greater.

Discussion of Computational Results

Figures 12 through 15 present computational results for various
particle loadings and particle thickness. Results are presented in
the same manner as those described in section 4.5. Again, it is noted
that the results are qualitatively identical to those obtained both
for the slab problem and for the random sphere placement problem.

For thin shields, the average transmission decreases exponentially
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with the cross section corresponding to a homogeneous mix of particles
and matrix. A transition region follows in which the transmission
begins to take on an asymptotic behavior. Several particle diameters
into the shield, the average transmission is seen to acquire an
asymptotic behavior decreasing exponentially with a cross section
characteristic of the statistical nature of the medium. At high
particle loadings, the difference between the statistical treatment

and the homogeneous assumption is dramatic.

Summary of FCC Relaxation Technique

In this chapter, an approximate model has been developed for
performing transport calculations in a particle-loaded medium. The
model permits calculations for any degree of loading and yields cal-
culational results that are reasonable, at least in a qualitative
sense. An evaluation of required computer time in comparison with
the random-placement technique is unfair, since the perturbation
approach alone has been employed for these types of calculations.
However, the author feels that implementation of the Double Monte
Carlo Method would result in run times consistent with those dis-

cussed in section 4.7.
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CHAPTER 6 Comparison of Theoretical and Experimental Results

In the preceding two chapters, two methods of performing transport
calculations in a sphere-loaded medium, have been presented. The analysis
in both chapters was restricted to the case in which both particles and
matrix are pure absorbers. It was also argued that, in the case in which
the particles are more efficient absorbers than the matrix, both methods
yield upper bounds on the transmission. It should be noted that, as the
packing approaches maximum, the structure of the medium will closely
correspond to the FCC structure if the method of Chapter 5 is employed.
The fact that maximum packing can also be attained with a hexagonal
close-packed structure casts some doubt on whether the FCC relaxation
method provides a rigorous upper bound at very high loadings. Perhaps
this point needs further investigation, but it will be shown that for the
limited experimental data, the FCC method does appear to provide an upper
bound.

It is of interest to compare calculated average transmission preofiles

for identical problems using the methods of Chapter 4 and Chapter 5. Figures

16 and 17 provide such a comparison. Perhaps the most interesting point

to note is that the curves corresponding to the random-placement technique
never lie below the curve resulting from the FCC relaxation approach.

This is surprising since, in the limit of low loading fraction, the random-
placement technique should provide the correct solution. There is no such
guarantee on the FCC technique. To the calculational accuracy the author
has been able to achieve, however, the two techniques do appear to give
identical results for loadings of 1% and below. At 5% particle loading,
the two techniques yield distinctly different results. The figures provide

a useful guide for deciding when the random placement technique becomes
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unacceptable for a specific problem. It should be mentioned that since
the FCC relaxation method has only been coded for use with the perturbation
scheme, it is less efficient computationally than the other method.

The problem of radiation transport in a particle-loaded medium has
received previous attention in the investigations of Burrus [4], Cantwell
[5], Anderson and Dunbar [2], and MacCallum [7]. Cantwell basically con-
structs a three-dimensional sample of the medium by randomly placing
spheres in a cubical box. Edge effects are treated by requiring the
cubical box to periodically repeat itself in all directions. In prin-
ciple, if the dimensions of the box are taken large enough, such a scheme
should provide the most precise treatment of the problem. The difficulty
with this approach is that the required computation time becomes excessive,
especially at higher loading fractions. However, this treatment does have
the advantage over the other three previous investigations in that scatter-
ing can be treated. The works of Burrus, Anderson and Dunbar, and
MacCallum are basically similar. Each artificially stratifies the medium
into a number of statistically independent sublayers, with the difference
being the chosen sublayer thickness. MacCallum corrects some errors in
the previous paper of Anderson and Dunbar, which eliminates the need for
a computer solution and results in an analytic expression describing the
behavior of the average transmission in a particle-loaded medium. The
analytic expressions obtained by MacCallum and by Burrus are almost
identical in structure. Anderson and Dunbar reported some experimental
transmission studies for spherical particle-loaded slabs irradiated with
a monoenergetic beam. The nature of the experiment enables one to neglect
scattering and to assume pure absorption. For the purposes of this investi-
gation, MacCallum's presentation of the pertinent information concerning

these experiments is presented in Table 1. 1In this table are also found







TABLE 1

Theory Versus Experiment

Experiment 1
L (em 1.38
Ep (em ™) 827
fp 0.052
D (cm) 0.0317
X (cm) 0.375
T (Experimental) 0.14%7
T (MacCallum) 0.228
T (Burrus) 0.231
T (Chapter &) 0.224
T (Chapter 5) 0.204

2 3
1:.38 5.5
899 130
0.042 0.108
0.0406 0.004
0.375 0.0635
0.28%7 0.34%?
0.326 0.338
0.328 0.340
0.310 0.339
0.301 0.33

5.5

130

0.108

0.004

0.127

0.311%3

0.115

0.117

0117

0.111

60

8.78

203

0.108

0.004
0.0635
0.20+?
0.201
0.203
0.201

0.193
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computational results derived from the methods of Chapters 4 and 5, in
addition to the results of the analytic expressions of Burrus and
MacCallum. Figures 18 through 21 present the corresponding predicted
dependence of the average transmission versus depth into the experimental
slabs. As in previous figures, the attenuation attributable to the matrix
has been factored out.

The agreement between theory and experiment is striking for the last
three experiments. The results for the second experiment are probably
acceptable. In the first experiment, however, one would expect better
agreement. Structurally, the first experiment does not differ that much
from the second, and the loading fraction is relatively low. The con-
sistency of agreement among the theoretical results is striking in all
cases and perhaps the first experimental value should be questioned.

Much more experimental data would be desirable, especially at higher
loadings, where the FCC relaxation method predicts a much lower trans-
mission than the other theoretical treatments.

The author also desires to point out the possibility of extending the
applicability of the random-placement method to somewhat higher particle
loading by increasing the corresponding As factor above the value computed
from equation (41). The idea is to use a value of AS which will guarantee
the proper particle volume fraction in an average sense along constructed
rays but which will result in errors in the placement of particles. It
should be recognized that this would result in an empirical scheme, which,
again, would require experimental evaluation of its range of applicability.

The agreement among the various theoretical approaches is excellent.
This is basically due to the rather thin slabs and weak loadings involved

in the experiments. In figures 22 and 23, the method of Chapter 5 is

compared with the predictions of Burrus and MacCallum at higher loading
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fractions. In these problems, the FCC relaxation method predicts con-
siderably lower values for the average transmission and a more reasonable
thin shield behavior. Since this method should provide an upper bound
for the case in which Zp > Em, it should provide results closer to the
truth. In addition, the methods of Chapters 4 and 5 are easily extended
to more complex problems, while the methods developed by previous in-
vestigators are not. Some of the more complex problems for which the
methods of this work can be applied are described in the remaining

chapters.
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CHAPTER 7 The Scattering Problem

Introduction

In the previous chapters, the author has restricted the analysis
to the case for which particles and matrix are pure absorbers. Two
methods of constructing the sphere-loaded medium have been presented.
Both methods have the advantage that only the region of the material
encountered along the ray traversed by a single transport particle
must be constructed. As noted in Chapter 6, others have investigated
the pure absorption problem, but only the work of Cantwell provides
a workable scheme for investigating the effect of scattering caused
by matrix, particle, or both. The purpose of this chapter is to ex-
tend the ideas of Chapters 4 and 5 in order to treat this complica-
tion. Based upon the exact nature of the random-placement technique
in the limit of low particle loadings and the efficiency of the random
lattice relaxation technique at high loadings, these techniques should
provide a much more efficient method of treating the scattering prob-
lem than the one previously available. In general, the introduction
of scattering requires one to remember much more of the previously
constructed medium, since there is now a mechanism by which a source
transport particle can return to previously traversed positiomns. In
practice, it is very unlikely that a transport particle at a specific
position will escape a spherical volume which is centered about that
position and which has a radius equal to several effective absorption
mean-free paths relative to the loaded medium. This suggests that
meaningful calculations can be performed with a rather limited memory

of previously constructed media.
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7.2 Construction of the Medium

The main difficulty introduced by scattering is that a transport
particle no longer is restricted to move along a single ray. A
scattering event results in the establishment of a new ray path. This
presents no difficulty to either of the previously developed construc-
tion schemes. The only requirement is that the nature of the medium
constructed along this new ray path must not contradict the nature of
the previous ray path. It also holds, by an argument identical to
that presented in section 4.3, that one can restrict himself to the

behavior of one source Monte Carlo particle per constructed sample.

7.3 Implementation of Theory

From the discussion in the previous section, it is observed that
except for the added memory requirement, one can proceed in the track-
ing of a single particle while simultaneously constructing the traversed
medium. The Double Monte Carlo scheme is, therefore, equally applica-
ble to the scattering problem. It is not immediately obvious, however,
that the perturbation approach can be extended to the scattering prob-
lem. The perturbation approach depends to a certain extent on the
structure of the governing differential equation describing the pure
absorption problem. This structure is immediately modified by the
introduction of scattering. With this in mind, one can write the

transport equation, including scattering and a source, as

G - 99(2,8,E) + I (F,E)¢(F,8,E) = S(7,Q,E)

+_[fdz'dgz'zs(f‘,z' > E,Q" > QE,D",E") . (66)
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It is convenient to represent the total interaction cross section
; m
at energy E for particle and matrix by ZE(E) and Zt(E), respectively.
Similarly, the scattering cross sections are represented by

EE(E' + E, Q' - ﬁ) and ZZ(E' + B, " = ﬁ). In addition, one can define

I (E)

Max{EE(E), zf(E)} } (67a)

ZE(E) Min{ZE(E), zf(E)} : (67b)

EE(E' > E, Q' > Q) Max{zz(z' + E, @' + B), ZE(E' +F, B > ﬁ)} , (67¢)

EE(E' + E, @' > Q) Min{zz(E' L L T ZE(E' PR N L ﬁ)} , (67d)

1 if zt(f,E) Z%(E)
F(T,E) = (67e)

H
o o

o
ol
H
™~
~
L
(S5 )
~—
li

I 48 E AEET + B Si5Y a Z:(E' +> E,Q' » 0)

0 if I_(F,E' > EQ' > @) = zg(E' + E,Q' + @)
(67f)
Finally, one is led to define
(zf(ﬁ) 2 Zi(E))
y(T,E) = > F(T,E) (68a)
ZE(E)

i zg(E' > E.G' > D) + (Z:(E' > ESBY = 8)

L L ¥ =N A =S Y
= ZS(E' + E,Q" ~+ Q))Fs(r,E' + E,Q% Q) . (68b)
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Employing relations (67) and (68), one can rewrite (66) to read

8 - V@E,8,E) + IL(E)6(F,H,E) = S(,E,D)
PR H = =
+ Y (F,E)IL(E)$ (7,8, E)
+_[/.dE'd§2'Z§(E' > E,Q' > D(E,R',E")

+j]dr'dﬂ'ys(r,E' -> E,_ﬁ' > §)¢(?,ﬁ',E') ; (69)

Equation (69) can be interpreted to imply that the transport particles
are moving in a homogeneous medium having a total interaction cross
section Zﬁ(E) and a scattering kernel represented by EE(E' - E,ﬁ' > 6).
In addition, there are two other possible scattering mechanisms
governed by the factors Y(?,E) and YS(?,E' > E,ﬁ' - ﬁ) which are
dependent upon whether the interaction position lies within particle
or matrix. It should be noted that the term involving Y(?,E) in
equation (69) results in either absorption or straight-ahead scatter
with no change in transport particle energy.

One concludes that the perturbation approach is indeed applicable
to the scattering problem. Therefore, both the Double Monte Carlo and
the perturbation techniques developed in previous chapters extend
quite naturally to the scattering problem. As mentioned before, the
only real difficulty is the additional memory requirements. How much
memory is required would be a very interesting numerical study. Per-
haps it should be pointed out that one can treat first-order scattering
of those particles scattered in the forward direction without any

real increase in memory requirements above that required in earlier
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chapters. Such scattered particles retain their motion away from
previously constructed media.

For the more general problem, the nature of the constructed
medium along a specific ray could be stored, together with the ini-
tial point on the ray, the direction cosines of the ray, and the
length of the ray. The vector description of the ray could be
stored in core memory while the constructed media data could be
stored on tape or disc. A simple geometric calculation, based
upon the location and velocity vector of a transport particle
coupled with the vector description of a previously established ray,
could then be performed in order to establish whether or not the
precise nature of the medium along this prior ray could have any
interference effects in the region presently being constructed. If

so, the required information could then be buffered into core.

The Higher-Moment Problem

The ideas described in the previous sections apply only to the
expected values of quantities such as total flux, right-going flux,
and absorbed dose. If scattering is included, there seems to be no
convenient way of obtaining the expected value of the higher moments
of such quantities. Basically, the transformation employed to
associate the higher-moment problem with a first-moment problem in
the case of pure absorption was dependent on the structure of the
governing differential equation. The introduction of scattering modi-
fies this structure sufficiently to preclude this type of transformation.

However, a reasonably accurate calculation of the expected values
of quantities of interest is usually more important than accurate

calculations of their respective standard deviations. In many
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applications, one could estimate standard deviations by computing

the first and second moments of the noninteracted transmitted flux.
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CHAPTER 8 Results and Conclusions

The transmission of radiation through a purely absorbing particle-
loaded medium has been investigated. This investigation was initiated
with the analysis of an artificial slab problem. Because of the simplicity
of this model, precise analytic results were obtained. It was found that
in the limit of thin shields, the expected value of the transmission
corresponds to that calculated when the assumption is made that the ma-
terial is a homogeneous mixture of particle and matrix material. As the
shield thickness increases, this is no longer true, and the expected
value of the transmission rather quickly attains an asymptotic behavior,
decreasing exponentially with an effective cross section characteristic
of the exact nature of the loading. This effective cross section deviates
progressively further from the homogeneous cross section as the slab
thickness is increased.

The investigation was then extended to the more realistic model of
constant-radius spheres imbedded in a matrix filler. Two approximate
methods were then developed for constructing the nature of such a composite
material. The combination of these two methods enables one to perform cal-
culations at any loading fraction with reasonable expenditures of computing
time. Because of the complexity of the models, the transmission was in-
vestigated with the use of Monte Carlo techniques. The resulting calcula-
tions predicted a behavior qualitatively identical to that predicted by
the slab model. One expects that the behavior carries over to materials
having variable particle size and nonspherical shape. The implication is,
that for pure absorption problems, realistic materials can be experimentally
analyzed by determination of the effective cross section from studies on

relatively thick shields, coupled with experiments on thin shields to
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describe the initial behavior of transmission versus depth. The scatter-
ing problem was also discussed and the applicability of prior results
described. A thorough evaluation of these ideas demands much more experi-
mental data for comparison with predicted results.

It should be noted that the random-placement ideas extend quite nicely
to nonspheribal particles and different size particles, at least at load-
ings low enough that the random assumption is approximately valid. The
main difficulty is that nonspherical particles would require establishment
and memory of the orientation of a particle as it is placed.

It should be noted that the results for the higher moment problem
have been of an extremely specialized nature. In fact, the only result
obtained is for a monoenergetic beam impinging on a purely absorbing
particle-loaded medium. Here, it was observed that the expected value
of higher moments of the transmission are no more difficult to attain than
the first moment. Just how important the monoenergetic restriction is
perhaps best pointed out in an example. Suppose the same problem is con-
sidered except that the beam is now composed of a continuum of energies.
In this case the intensity of the beam within an energy interval dE
centered at E is I(E)dE. Assume that, for one ray sample through a
particle-loaded medium, the functional dependence of the transmission with
energy E and position x is given by Ti(E,x). The total transmission is

then

T (x) =f I(E)T. (E,x) dE . (70)
. all E =

Since I(E) is not stochastic, if one averages over all possible configura-

tions of the medium, one obtains

T(x) =f I(E)T(E,x) dE , (71)
all E







i
|

77

where T without the subscript i represents the expected value of the

transmission. Since T(E,x) is the expected transmission at x resulting
from a monoenergetic beam of energy E, it can be computed by the methods
previously outlined. However, if one desires the expected value of the

second moment of the total transmission, one finds that

é(T?(x)) =f f I(E)I(E')g(Ti(E,x)Ti(E',x)) dE' dE , (72)
1 alk E a1l B!

where & represents the expected value operator. Hence, to evaluate (72),
one must obtain the autocorrelation function of the transmission with re-
spect to energy. This is not difficult since one can employ previously

developed concepts by noting that

E%E (Ti(E,x)Ti(E',x)) = -(Zi(E,x) + Zi(E',x)) (Ti(E,x)Ti(E',x)) 3 (73)

with initial condition (Ti(E,O)Ti(E',O)) = 1.

If one takes the beam to be monoenergetic and desires the expected
value of the first and second moment of the transmission averaged over a
finite area surface perpendicular to the incident radiation, one encounters
basically the same difficulties: namely, one must obtain the autocorrela-
tion function of transmission with respect to the separation between two
parallel rays. It should be noted that a finite area detection system

results in the above type averaging. For this problem, a transformation

similar to (73) can be performed, but now the cross section term is dependent

upon the nature of two adjacent rays rather than of two energies. Both
models for constructing the sphere-loaded medium permit the simultaneous
construction of two adjacent rays and, therefore, such calculations can be

performed.
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As one considers more complex problems, including scattering with
respect to both energy and direction, one must investigate simultaneous
correlation of position, direction, and energy. Simple transformations
such as (73) can no longer be obtained, and the author has been unable
to devise any reasonable scheme of performing these types of investiga-

tions. As pointed out by MacCallum, Tshebysheff's Lemma [9] becomes

useful for these types of problems. This lemma implies that if x is a
positive stochastic variable with &(x) = 02, then the probability P of
the inequality x = v, has the following upper bound:

02
SR Ay (74)

for v =2 02. Since, in a particle-loaded medium, quantities such as
particle density, activation, and flux become positive stochastic vari-
ables, this lemma can provide useful upper bounds based upon only expected
values.

It is desirable to evaluate this research with respect to the pre-
vious investigations. For the pure absorption problem at particle
loadings below 5 volume-percent, the methods of all previous investigators
and the methods of this research appear to provide an accurate description
of the shielding characteristics of particle-loaded materials. This
agreement leads one to conclude that the analytic solutions of Burrus and
MacCallum are perhaps much more accurate than has previously been realized.
However, for more complex problems, such as the treatment of scattering,
only the methods of this research and the method of Cantwell are
appropriate. Of these methods, the random-placement method of Chapter 4
should be, by far, the most efficient, both in terms of required computa-

tion time and in terms of computer coding simplicity. At higher loadings
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for the pure absorption problem, the FCC relaxation method should predict
an expected transmission much closer to reality than either Burrus or
MacCallum. Any statement of the accuracy of this model must await addi-
tional experimental data. Cantwell's method extends to higher loadings,
but the cost in computer time soon becomes prohibitive. If the FCC
relaxation method is found to predict reasonably accurate shielding char-
acteristics for the pure absorption problem, then this method can be ex-
tended to the treatment of scattering problems with a reasonable degree
of confidence. Another important result of this research is its implica-
tion on future experimental work in the area of particle-~loaded shields.
A complete description of the absorption characteristics of a particle-
loaded shield requires the determination of both an asymptotic cross

section and a thin shield behavior.




T R E————
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APPENDIX

Program EX@S employs the Double Monte Carlo method and the random
sphere placement assumption described in Chapter 4. In the early stages
of the author's investigation, it was desirable to obtain a rather inde-
pendent check of the analytic results of Chapter 1. Therefore, EX®S also
has the capability of performing the Double Monte Carlo calculations for
the slab problem described in Chapter 2. Program RANLAT employs the
perturbation method and the random lattice relaxation technique described
in Chapter 5. The combination of these codes presents both approximate
methods for comstructing the sphere-loaded medium and both computational
schemes for performing the transport calculations. Both codes have the
capability of computing the expected value of the transmission and of
higher moments of the transmission at various desired depths within a
slab of particle-loaded material. Fortran listings are included but the
reader is cautioned that little effort was spent on maximizing the
efficiency of these codes. If extensive calculations are contemplated,
the author feels that a careful "cleaning up" of the codes, especially by
a professional programmer, should be able to provide a worthwhile decrease
in run time.

Two other features of these codes should be noted. First, if the
particle cross section is higher than that of the matrix, the values cal-
culated are based on a transparent matrix containing particles of cross
section equal to Zp ~ Zm. If the matrix cross section is higher, the cal-
culations are based on transparent particles imbedded in a matrix of cross
section Zm -~ Zp. Second, the user must specify the number of batches of
source particles to be employed and the number of source particles per

batch. This enables the codes to compute expected values and unbiased

estimates of the standard deviation based upon batch-to-batch results.







Card No.

TABLE 2

Program EX@S Input Format

Variable

CSM, CSP,EP,D,NP@S,NS@R,KBAT,
NTYP, NM@M
(WPRD(I), I = 1, 10)

(XB(I), I = 1, NP@S

81

Format

4E10.3, 3I10,
215
10A8

(8E10.3)
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TABLE 3

Definitions of Variables for EX@S Input

Item No. Variable Name Identification

) | CSM Macroscopic cross section of matrix

material (cm_l)

2 CSP Macroscopic cross section of particle

material (cm_l)
3 FP Volume fraction of particle material

4 D Diameter of particles (cm) for spheres,
thickness of particle (cm) for slabs

5 NP@S The number of distinct positions at
which the expected value of a moment
of the transmission is desired. NP@S
must be less than 101

6 NS@R Number of source particles per batch
7 KBAT Number of batches to be run for this
problem

8 NTYP Slab or sphere option switch

= 0 Sphere option desired
# 0 Slab option desired
9 NM@M Moment of transmission to be calculated.

Note that NM@M = 1 corresponds to simply
the expected value of the transmission

10 WORD Arbitrary alphanumeric identification
of problem
11 XB Depths (cm) at which calculations are

desired. These must be arranged in
ascending order
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TABLE 4

Program RANLAT Input Format

Card No. . Variable Format
i CSM,CSP,FP,D,NP@S ,NS@R,KBAT, 4E10.3, 3I10,
NM@M 5K, 15
2 (WORD(I), I = 1, 10) 10A8

3 (XB(I), I = 1, NP@®S) (8E10.3)







TABLE 5

Definitions of Variables for RANLET Input

Identification

84

Item No. Variable Name
1 CSM
2 CSP
3 FP
4 D
5 NP@S
6 NS@OR
7 KBAT
8 NM¢@M
9 WORD
10 XB

Macroscopic cross section of matrix

material (cm-l)

Macroscopic cross section of particle
material (cm"l)
Volume fraction of particle material

Diameter of particles (cm)

The number of distinct positions at
which the expected value of a moment
of the transmission is desired. NP@S
must be less than 101

Number of source particles per batch

Number of batches to be run for this
problem

Moment of transmission to be calculated.
Note that NMPM = 1 corresponds to simply
the expected value of the transmission

Arbitrary alphanumeric identification
of problem

Depths (cm) at which calculations are
desired. These must be arranged in
ascending order

Both EX@#S and RANLAT are written for the CDC 6600 computer under the

Scope 3.2.0 Operating System.
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PROCGRAM EXOS(INPUT,OUTPUT,TAPEGRO=INPUT)
DIMENSTON XB(100) ,ANS(100),NSP(100),NSP2(100),
INSMX(L00),WCPD(L10) yARAR(100),ASIG(100)
1 RFAD 2,CSMyCSP,FP,DyNPOSyNSORyKBAT4,NTYP,NMOM
2 FCRMAT(4E10.3,2110,4215)
IF(ECF,60)1000,2 et
3 IF(NMOM.EQ,0)NMOM=1
IF(KBEATLEQ.0)KBAT=1
READ &4, (WORD(I),I=1,10)
READND 5,4,(XB(I),I=1,4NPCS)
& FCRMAT(10A8)
S FCOMAT(BEL10,.3)
PRINT 6
& FCRMAT(*1%®/% EXPONENTIAL ATTENUATION USING ORDERS OF*¥
1 X*PARTICLES¥*)
PRINT 7,¢(WCRD(I),I=1,10)
7 FCRMAT(X10AB8)
PRINT 8,NMOM NSOR,CSM :
8 FCRMAT(/* STATISTICAL MOMENT=*I3,/* NO, SOURCE*
I1X*PARTICLES=*I10,/7% MATRIX CROSS SECTION(1./CM.)=%E10.3)
IF(NTYP.NE.O)GO TO 10
PRINT ©,CSP,FP,D
2 FCRPMAT(* SPHERE CROSS SECTION(1./CM,)=*E10.3,7% SFHERE*
1 X¥VCLUME FPRACTICN=*E10.3,/% SPHERE LDIAMETER(CM.)=%E10.3)
GC TO 42
10 PRINT 11,CSPyFP,D 3
11 FORMAT(* SLAB CROSS SECTION(1./CMa)=*E10.3,7% SLAR V(¥
1¥LUME FRACTICN=%E1043/7%* SLAB WIDTH(CM4)=%E10.3)
12 XF¥OM=NMOM
CSM=CSM*XMOM
CSP=CSP*XMOM
IFEESPGTLCSM) GB 1O 43
CSR=CSP
SIG=CSM=~-CSP
WE=C.
6L .TC 14
12 CSR=CSM
SIG=CSP=-CSM
Hp:i.

14 PRINT 164CSR,SIG
1 FORMAT(® BASE CROSS SECTICNCL./CM)=2%E10.3,7* DELTA C*
L ¥*ROSE SECTION{(1./CMe)=%*EL1D.3)
CC €00 I=1,NPGCS
ﬁﬂPC(I’=U¢
G0 ASIC(IXY=C,
LINE=11

ANSI(I)=0.
NSP(I)=0
NSP2(I)=0

1S NSMX(I)=0
DC 21 I=1,NSCR
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ZXr++1 X X X
T AN N
CD"-GHQC)

17 XS=XR(K+1)
IF(X.LT.XS)GO TO 18
K=K+1
ANS(K)=ANS(K) +1,
NSP(K)=NSP(K) +N
NSP2 (K)=NSP2(K)+N*N
MAX=NSMX (K)
IF(NGT.MAX)NSMX(K)=N
IF(K.EQ.NPOS) GO TO 21

6L TO 17

18 IF(K.EC.0.) GO TO 21
XT=XF
IF{WP.EQ.1+) GO TO 19
R=PANF (0.)

XT=X=ALOG(R) /SIG
1S CALL PROBE(XyXLyXRyDyFP,NTYP,INT)
IF(XT«GTXL)GO TO 20
X=XT
W=0.
N=N+1
GC 1TQ 17
20 N=N#1
X=XP
IF{(WF.EQs04) GO TO 17
XT=XL=-ALCG(R)/SIG
IFIXT LT %) GO 1@ 17
X=%7
=Ce.
GC T8 17
21 CCNTINUE
XTCT=NEQP
LINE=LINE+3
IF{LINE.LT«60) GO TO 555
LINE=3
PRINT 556
& FCRMAT(®1¥%)
S CCNTYINUE
PRINT 601,J
01 FCPMATI(/*% RATCH=*IZ2,/3X¥X(CM.) *BX¥PHI¥8X*
18AX¥NMAXY)
DC 22 1I=1,NPCS
PEI=ANS(I)/XTQOT
ARAR(II=ABAR(I)+FHI
SIG(I)=ASIG(I) +PHI¥PHI
X=XE(I)
MAX=NSMX(I)

7Aﬁ$8x¢r STG‘
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557
22

23
299

5658

700

559
701
702

1000

CB=NSP(I)/ANS(I)

SCEB=ANSI(I) *NSP2(I)=NSP(I)*NSP(I)
SCB=SCR/ANS(I)/ (ANS{I)~-1,)
SCR=SQRT(SC8)

LINE=LINE+1

IF(LINE.LT4€0). 60 _T0 557 el L -

LINE=1

PRINT 556

CCNTINUE

PRINT 239X4PHILCBySCRy4MAX
FCRMAT(4LEL12.L4,T112)

CCNTINUE

IF(KRAT.EQ.1) GO TO 1
XRAT=KPAT

LINE=LINE+3

IF(LINE.,LT.60) GO TO 558
LINE=3

PRINT 556

CONTINUE

PRINT 700

FCRMAT (/% BATCH STATISTICS¥*/3IX¥X(CM,)*8X*PHI*BX*1SIG*)
DC 701 I=1i,NPOS
PHI=A3AR(I)/XRAT
SPH=(ASIG(I)-XBAT*PHI*PHI)/(XBAT~-1,.)
SPH=S2RT (SPH)

X=XR(I)

LINE=LINF#1

TF(LINE,LT.60) GO TO 559
LINF=1

PEINY 556

CCNTINUE

PRINT 702,%X4PHI,SPH
FCRMET(3FE12.4)

50 10 4

CCNTINUE

END

SURRCUTINE SPEAR(IXL ¢XR,XP,YP,ZP,0D)
R=RANF (0,)

RC=C*SQRT(R)

XF=XL+RC/2.

XR=XL+PC

RP=REANF(D,.)

TH=6.283185307%*R

PHO= . S*SQ2T(N¥*DN=RPC*RC)
YE=FHO®*COS(TH)

ZP=PEOESIN(TH)

RETURN

END

SURPOUTTINE PPORF(X,XL yXPy0,FP,NTYP,INT)
DIMENSICN XM(10),¥YM(10),2ZM(1D)
IF(ANTYP,EQ.D) GO TO 3
IF(INT.GT.0) GO TO 2

INT=1
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 XLAM=FP/D/ (1.=-FP)

R=PANF {0.)
IF(R.GT.FP) GO T0 1%
R=PRAKRF(0.)

XR=X+R%*(

XL=XR=D
IF(XLLT.0.)XL=0,

GC TO 100

R=PANF (0.)
XL=X=ALCG(R) /XLAM
XR=XL+D

GC TC 100

R=PANF(0.)
XL=X=-ALOG(R) /7XLAM
XR=XL+D

GO TC 10¢C
IF(INT.GT40) GO YO 5
INT=1

XLAM=1 ,S*FP/D/(1.-FP)
MEN=1

R=RANF (0,.)
IF(R.LE.FP) GO TOC &
R=RAKNF(Q )
XL=X=ALOG{R) /XLAM :
CALL SPEAR(XL ¢4XRyXM{1) yYM(1),ZM(1), D)
75 o 3 odel B 2

R=RANF ((0.)
TH=E.2R3185307%R
R=PANF(0.,)

XMr{=2, ¥R=1,
R=PAANF(0,.)

REO= . 5*D*R**, 31333333333
YE(1)=RPHO2SORT (1.=XMU¥*2)
XML YI=YM(1)*CCS{TH)Y+X
YM{1)=YM(1)*SIN(TH)
ZM (1) =RPHO*XHMU
BHO=YM(1)**2472M(1)%¥E
REQ=D®"D/4.~-PHC
REQC=SAQRT (RHD)
XR=XM(1)+RHO
XL=XM(1)-RHC
IF(XLsLTe0e)XL=0»s

GC YC 100

KEM=VMEWNM

0C &€ I=1,XEM
SERP=Y=XM{T)=0

ITF(SEP GEeDo) MEM=MEM=1
CCNT INUE

DC 7 I=1,MEM
KF=VEMe2=]
XMIKM)=XM(KM=1)
YM{KM)=YM(KM=1)
ZV(K¥)=ZM(KM=1)
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100

MEM=MEM+1

XL=X

R=RANF (0.)

XL=XL=-ALOG(R) /XLAM

CALL SPEAR(XLy¢XReXM(1),YM(1),ZM(1),0D)
LvV=10

DC ¢ I=2,MEM

SEP=XM(1)=XM(I)

IF(SEP.GE«D) GO TO 9
SEP=(XM(L1)=-XM(I))*¥24+(YM(L)=-YM(I)) **¥2+(ZM(1)-ZM(])) **2
1 -D¥C

IF (SEPLLT.0.)LV=1

CCNTINUE

IF(LV.EQ.L1)YG0 TO 8

MEM=MINO (2 ,MEM)

CCNTINUE

RETURN

END
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PROGRAM RANLAT(INPUT,0UTPUT,TAPEGO=INPUT)
DIMENSION XB(100),ANS(100), WORD(10) ,ABAR(100) ,ASIG(100)
READ 2,CSM,CSP,FP,D4,NPOS,NSOR4,KBAT,NMOM
FORMATI(4EL10.3,3110,45X41I5)
IF(EOF4,60) 1000,3
3 IF(NHOHOEQ.D)NMOH=1
IF(KBAT.EQ.0)KBAT=1
READ h,(HORD{I),I=1,10)
READ 5,4 (XB(I),I=1,NPOS)
4 FORMAT(10A8)
5 FORMAT(8E10,3)
PRINT 6
& FORMAT (*1%/* EXPONENTIAL ATTENUATION IN A RANDOM FCC*
IX*LATTICE*)
PRINT 7, (WORDI(I) ,I=1,10)
7 FORMAT(X10A8)
PRINT 84,NMOMyNSOR,CSHM
8 FORMAT(/* STATISTICAL MOMENT=%*I3,/* NO. SOURCE PARTIC*
1*LES=*T10,/7% MATRIX CROSS SECTION(1./CM,)=*E10.3)
PRINT 94,CSP4FP,D
9 FORMAT(* SPHERE CROSS SECTION(1./CM.)=*E10.3,/% SPHERE®*
1 X*VOLUME FRACTION=*E10.3,/* SPHERE DIAMETER(CM.)=%E10.3)
12 XMOM=NMOM
CSM=CSM*XMOM
CSP=CSP*XMOM
IF(CSP.GT.CSM) GO TO 13
CSR=CSP
SIG=CSM=CSP
WP=14,
WM=D0.
GO TO 14
13 CSR=CSM
SIG=CSP-CSM
WP=0.
WM=1.
14 PRINT 16yCSR,SIG
16 FORMAT (* BASE CROSS SECT
1*R0OSS SECTION(1./CM.) =*E
DO 600 I=1,NPOS
ABARI(I)=0,
600 ASIG(I)=0.
LINE=11
DO 999 J=1,KBAT
DO 15 I=1,NPOS
15 ANS{I)=(.
DO 20 I=1,NSOR
K=0
INT=0
W=1.
X=0e
17 R=RANF(0.)
X=X=-ALOG(R) /SIG
CALL LACE(X4FPyaTYPyDyINT)

nN =

ON (1./CM.)=%E10.3,/* DELTA C*
0

«3)

I
1
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19

20

556
555

601

257
21
22

999

~ N
oo ] = T

N == O

XS=XB(K+1)

IF(X«LTeXS) GO TO 19
K=K+1

ANS (K) =ANS(K) +W
IF(K.EQ.NPOS) GO TO 20
GO TO 18
W=WP*TYP+WM*(1.-TYP)
IF(WeNEL.D.) GO TO 17
CONTINUE

XTOT=NSOR

LINE=LINE+3
IF(LINE.LT.60) GO TO 555
LINE=3

PRINT 556

FORMAT(*1#%)

CONTYINUE

PRINT 601,J

FORMAT(/* BATCH=%*I3,/3X*X(CM.) *8X*PHI®*)
DO 21 I=14NPOS
PHI=ANS(I)/XTOT
ABAR(I)=ABARI(I) +PHI
ASIGI(I)=ASIG(I)+PHI*PHI
X=XB(I)

LINE=LINE+1
IF(LINE.LT«60) GO TO 557
LINE=L

PRINT 556

CONTINUE

PRINT 22,X,PHI
FORMAT(2E12.4)

CONTINUE

IF{KBAT.EQel) GO TO 1
X3AT=KBAT

LINE=LINE+3
IF(LINELLT.B0) GO TO 558
LINE=3

PRINT 5§55

CONTINUE

PRINT 700

FORMAT (/* BATCH STATISTICS*/3X*X(CM,)*SX*PHI*8X*1SIG*)
CO 701 I=1,NPOS
PHI=ABAR(I) /XBAT
SPH={ASIG(I)=XBAT*PHI*PHI)/Z (XBAT=1.)
SPH=SQRT (SPH)

68) GO T0 559

p"_f‘INT 7:?,X,P“{I,SPH
FORMAT(3E12.4)
GC TO 1
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1000 CONTINUE
END
SUBROUTINE LACE(SyFP,TYP,D, INT)
DIMENSION XC(498),YC(4yB)9yZC(4y8)yXM(2),YM(2)4ZM(2)
IF(INT.EQ.1) GO TO 1
INT=1
MEM=0
A=6.283185307/3./FP
A=D*A¥*,3333333333
RI=A*SQRT(2.) /4.
RA=RI-D/2.
A2=A/2.,
R=RANF (04)
XO0=R*¥A
R=RANF (0.)
YO=R*A
R=RANF (04)
Z0=R*A
R=RANF (0e)
WZ=2.*R~-1,
R=RANF (0)
TH=6,283185307*R
WY=SQRT (1 e=WZ*WZ)
WX=WY*SIN(TH)
WY=HY*COS{(TH)
XC(1,1)=0.
YC(1,1)=0.
IC(1,1) =0,
XC(2,1)=A2
YC(231)=Q2
2C0(2,1)=0.
XC(3,1)=A2
YC(3,1)=0,
I0(2,1)=A2
XCl&L,1)=0.
Y:‘iyl’:ﬁp
ZC(Q;}):RE
XC(1;2)=0.
Y3(1}2)=ﬁ
23{1,2113.
XC(2,42)=A2
YC({2,2) =42
ZIC(2,4,2)=0,
XC(3,2)=A2
YC(3,2)=A
G (342)
XC(L,2)=
YC(4,2)
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YC(2,3)=A2
ZC(2,3)=A

XC(3,3)=A2
YC(3,3)=0-
ZC(343)=A2
XC(Q,3)=D.
YC{L,y3)=A2
ZC (L4 3)=A2
XC(1,4)=0,
YC(1,4)=A

ZC(1,4)=A

XC(24y4)=A2
YC(2,4)=A2
ZC(2,4) =A

XC(3y4)=A2
YC(3,Q)=A

ZC(3,4)=A2
XC(LI-,L&)=00
YC{4yh4)=A2
IC(L4y4) =A2
XC(1,5)=A

YC(1,5)=0.
ZC(1,5)=0.
XC(2,5)=A2
YC(2,5)=A2
2C(2,5)=0,
XC(2,5)=A

YC(3,5)=n2
20(395’3332
XC(Ly5)=A2
YC(L“’S):O.
ZC(LO’S):I«E
XC(1,6)=A

YC(1,6)=A

IC(1,6)=0,
XC(2,6)=A2
YC(2,6)=A2

ZC(Z,E—:}:.“
XC(3,6)=4

YO({3,6)=A2
ZC(3,6)=A2
XC (Ly6)=A2
YC(LyB)=A

ZC(4,4,6)=A2

YC(1,7)=0.
I0(1,7) =4
XC(E’,?)-"?
YC(2,7)=A2
ZC(:-?} =A
XC(3,7)=A
YC(3,7)=A2
ZC(3,7)=A
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XC(L4,7)=A2
YC(‘-&’?):GQ
ZC(L4,7)=A2

XC(1’8’=A

YC(].,B):A

ZC(1,8)=A

XC(2,8)=A2

ZC(2,8)=A

XC(3458)=A

YC(3,8)=A2
2C(3,8)=A2
XC(“’B):AE

YC(L,8)=A

ZC(&;B)=A2

X=X0+S*WX

Y=YO+S*NWY

2=204+S*NWZ

IF (MEM.EQ.Q0) GO TO 2
SEP=(X=XM(1))*%2 +(Y-YM(1)) **2+(Z-ZM(1)) **2=-RI*RI
IF (SEP+GT0.,) GO TO 2
SEP=(X=XM(2))**2+(Y=-YM(2))**2 +(2-ZM(2))**2-D*D/%.
TYP=0D,

IF(SEP.GT.0.,) GO TO 100
TYP=1.

GO TO 100
NX=ABS(X) /A

XR=NX

XR=XR*A

IF(XeLTaDos) XR==A=XR
NY=ABS(Y) /A

YR=NY

YR=YR*A

IF{YeLTe04) YR==A~YR
NZ=ABS(Z) /A

ZR=NZ

IR=IR*A

IF(Z2eLTe0e) ZR==A=2ZR
X=X=XR

Y=Y=YR

2=2-17R

IF(XGT.A2) GO TO 6
IF(Y.GT.A2) GO TO0 &
IF{Z.GT<A2) GO TO 3
NOC=1

GO TO 190

NMOC=3

60 TO 10

IF(Z.GT4A2) GO TO S
NOC=2

GO 7O 10

NOC=

GO TO 10
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g
10
11

12

13

100
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IF(Y.GT.A2) GO TO 8
IF(Z.GT.A2) GO TO 7

NOC=5

GO TO 10

NOC=7

G0 TO 10

IF(Z.GT.A2) GO TO 9

NOC=6

GO TO 10

NOC=8

K=0

K=K+1
SEP=(X=XC(KyNOC))**¥24+ (Y=-YC(KyNQOC) ) **2+(Z=-ZC(KyNOC)) **2
1-RI*RI

IF(SEP.GT.04) GO TO 13
MEM=1

XM(1)=XR+XC (K4NOC)
YM(1)=YR+YC (K4NOC)

IM (1) =ZR+ZC (K4NOC)
R=RANF(0.)
TH=6,283185307*R
R=RANF(0.)

XMU=2+.*R-1.

R=RANF(0.,)

RHO=RW*R¥*, 63333333333
IM(2)=RHO*XMU+ZC(K4,NOC)
YM(2) =RHO*SQRT({1.-XMU*XMU)
XM(2)=YM(2)*COS(TH) +XC(K,NOC)
YM(2)=YM(2) *SINI(TH) +YC(KyNOC)
SEP=(X=XM(2)) **2+(Y=YM(2))* %2+ (Z=ZM(2)) **2=-D*D/ 4.
TYP=D.

IF (SEP.GT.0+) GO TO 12
TYP=%,

XM(2)=XM(2) +XR
YM(2)=YM(2) +YR
IM(2)=2ZM(2) +2R

GO TO 108

IF{(KeNEan) GO TO 11

MEM=0

TYP-’—'D.

CONTINUE

RETURN

END
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